

Marine Shrimp Laboratory

Marine Shrimp Laboratory

Broodstock

Nursery

Hatchery

Experimental units

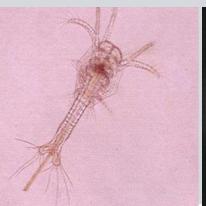
Yakult Experimental Shrimp Farm

The farm

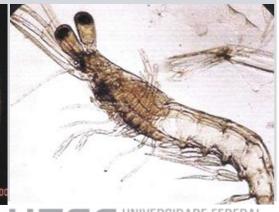
Pond with liner

Raceway

Shrimp harvest




Shrimp hatchery

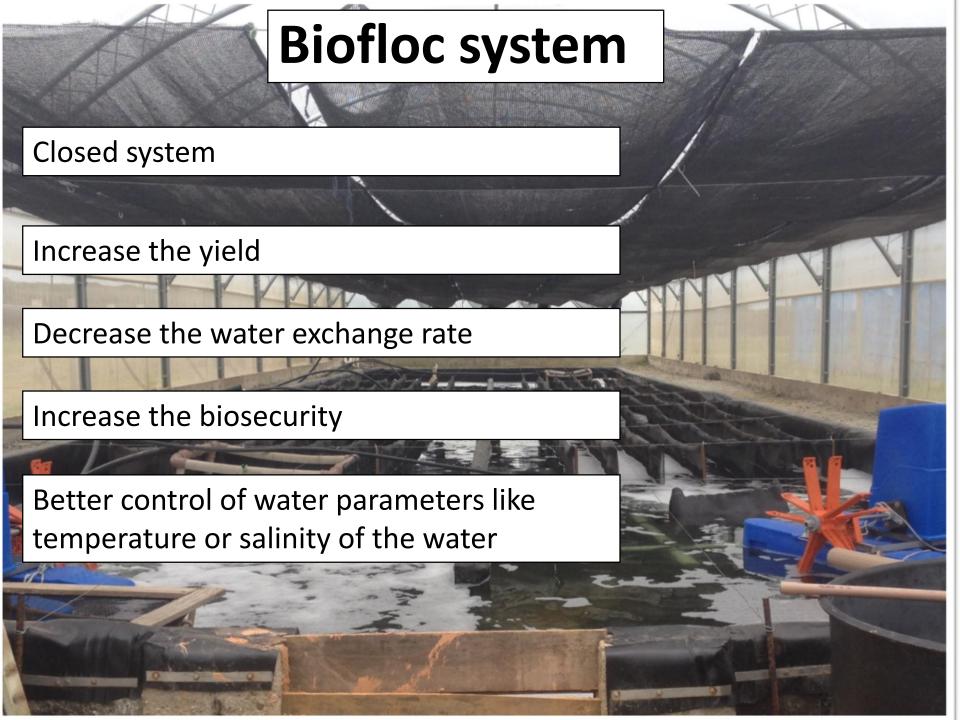

- Intensive system
- Tanks with "U" botton shapes of 10 to 20m³
- Heating and aeration system
- Diary addiction of microalgae
- Water exchange between 25 to 75%, before mysis 1 stage.

Nauplio Protozoea

Larval shrimp stages

Nauplius: no external feeding

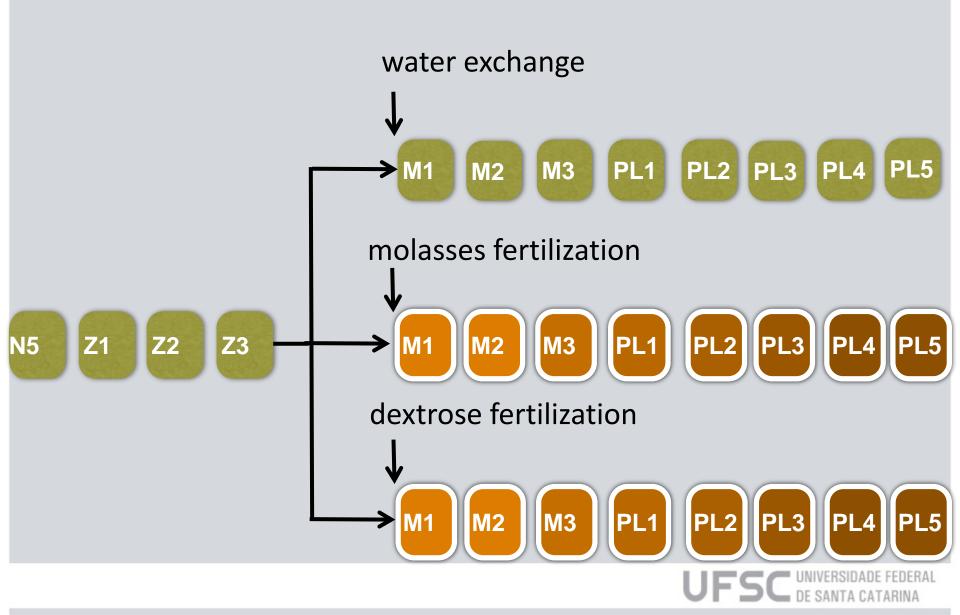
Mysis: Zooplankton as primary source of feeding



Protozoea: microalgae (diatoms) as primary source of feeding

Post larvae: Detritivorous animal

The objective of this work was to assess the hatchery performance of white leg shrimp (*Litopenaeus vannamei*), between mysis 1 and post-larval 5 stages, using a zero exchange biofloc system.


We used 16 tanks (92x68x25cm) with volume of 60 L

Each tank had: linear aeration $(O_2>4.5 \text{ mg L}^{-1})$ and heaters $(29,5\pm0,5 \text{ °C})$

Stoking: 12,000 mysis 1 (200 larvae L⁻¹), SPF from Aquatec Aquacultura

Feeding: 8 x per day, with the adequate feed for each larval stage (Inve diet)

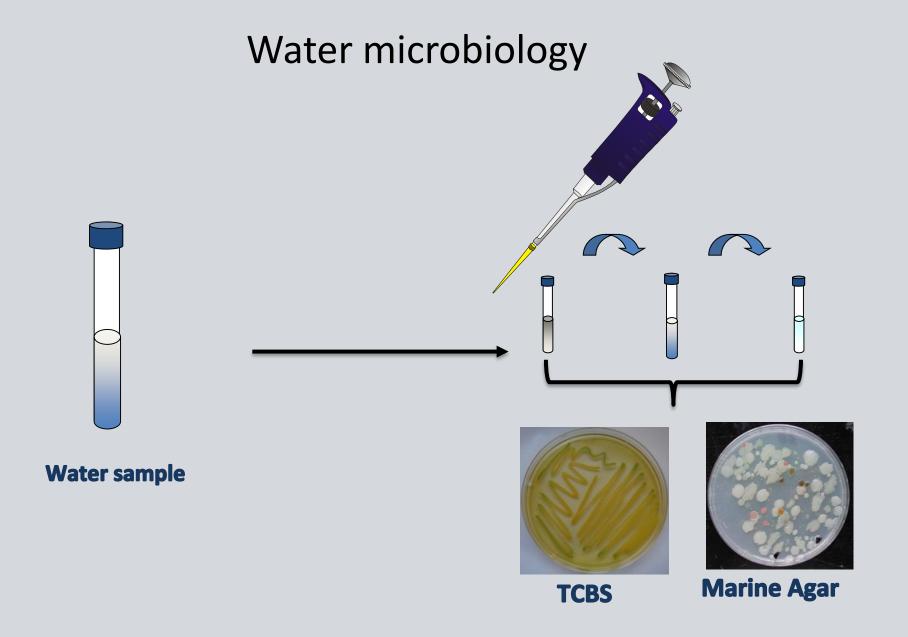
Three treatments: molasses, dextrose and control

Anhydrous dextrose (C₆H₁₂O₆, Sigma-Aldrich®), 100% carbohydrate

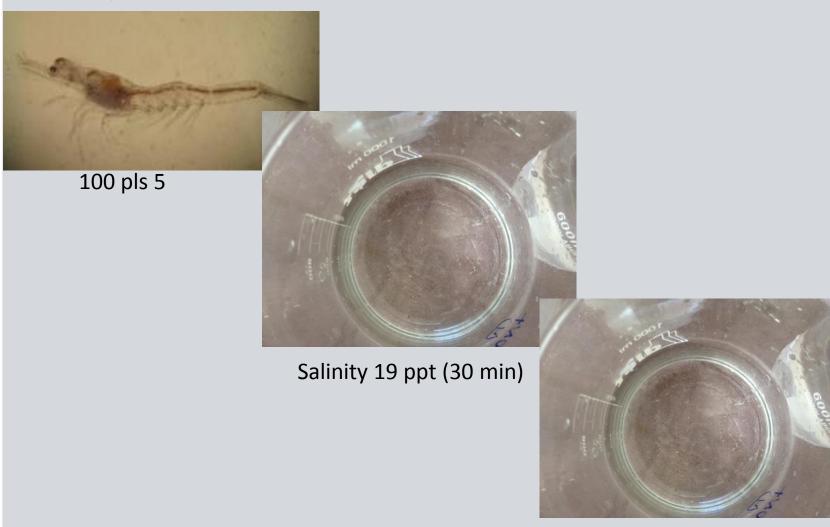
Molasses (Indumel®), 55% of carbohydrate

- Divided in 3x per day
- ➤ Maintain ammonia levels <1 mg·L⁻¹,
- ➤ Considering that 20 g of carbohydrate are required to convert 1 g of ammonia nitrogen into bacterial biomass (Avnimelech, 1999)

Evaluations:


Water quality:

- Dissolved oxygen, temperature, pH twice a day.
- Salinity, alkalinity, nitrite, nitrate and total ammonia daily
- Total suspended solids (TSS) every other day


Shrimp performance:

- Survival.
- Final weight and length.

Salinity stress test

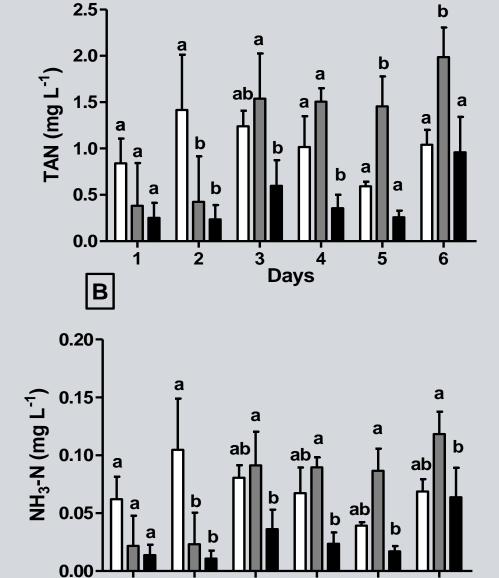
Salinity 35ppt (30 min)

Water consumption

Water consumption (L per thousand of PL)

Water used in liters
(initial water + water used in water exchange or to replenish evaporation losses)

Number of thousands of PLs produced


Results

Water Quality

Parameter	Control	Dextrose	Molasses	
				<u>p</u>
Temperature (°C)	30.20±0.47 ^{a*}	30.45±0.26 ^a	30.28±0.21 ^a	0.58
Oxygen (mg·L ⁻¹)	5.18±0.05 a	4.88±0.10 b	4.84±0.13 b	0.0015
рН	8.00±0.02 a	7.80±0.04 b	7.90±0.03 ^c	0.0001
Salinity (g·L ⁻¹)	35.50±0.03°	35.43±0.09 ^a	35.41±0.21 ^a	0.64
NH ₄ +/NH ₃ -N (mg·L ⁻¹)	1.02±0.29 a	1.21±0.66 a	0.44±0.29 ^b	0.0186
NH ₃ -N (mg·L ⁻¹)	0.05±0.09 a	0.02±0.11 ^a	0.01±0.05 b	0.0276
NO ₂ N (mg·L ⁻¹)	0.02±0.012 a	0.01±0.01 ^a	0.01±0.01a	0.0742
NO ₃ -N (mg·L ⁻¹)	1.74±0.63°	1.58±0.69 ^a	3.18±1.30 ^a	0.1434
PO ₄ ³⁻ (mg·L ⁻¹)	0.11±0.72a	0.15±0.31a	1.28±0.33 ^b	0.0463
Alkalinity	129.3±10.12 ^a	134.3±12.77 ^a	156.70±39.31 ^a	0.4049
SST	259.8±8.88ª	281.3±5.29 ^a	278.30±11.39 ^a	0.051
Total heterotrophic bacteria				
(Log CFU mL ⁻¹)	4.446 ± 0.3034^{a}	6.859 ± 1.254 b	5.828± 0.5863b	0.0077
Total <i>Vibrio</i> spp.				
(Log CFU mL ⁻¹)	1.500 ±1.000 a	3.406±1.851 ^a	2.771±2.074 ^a	0.3205

Results

2

3

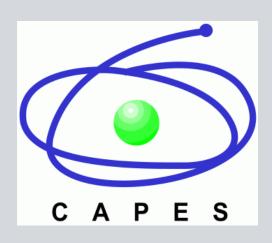
Days

Figure 1. Daily mean total (A) and free ammonia (B) in Pacific white shrimp (*Litopenaeus vannamei*) hatcheries between the mysis 1 and postlarva 5 phases. Different letters on the same day indicate significant differences, as indicated by Tukey's test of mean separation (p<0.05).

Results

Hatchery performance

Parameter	Control	Dextrose	Molasses	р
Survival (%)	$90.5 \pm 5.4^{a*}$	90.2 ± 10.5 ^a	85.1 ± 11.1 ^a	0.7058
Stress survival (%)	97.4 ± 2.0^{a}	95.3 ± 3.2 ^a	93.6± 6.1ª	0.4731
Final length(mm)	6.1 ± 0.2^{a}	6.1 ± 0.1^{a}	6.2 ± 0.2^{a}	0.5093
Final Weight (mg)	$0.15\pm0.1^{\text{a}}$	0.197 ± 0.06^{a}	0.178 ± 0.01^{a}	0.3206
Water consumption (L per thousand post-larvae 5)	56.22 ± 3.31 ^a	6.49 ± 0.79 ^b	6.89 ± 0.95 ^b	<0.0001


Conclusion

The use of a biofloc system without water exchange, using dextrose and molasses as the carbon source, maintains the production rates in the *L. vannamei* hatchery and decrease water use.

Acknowledgments

